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I. INTRODUCTION 

Current Army investigation of projectiles containing chemical payloads 
and smoke/incendiary agents has generated new interest in liquid-filled 
shell. These often exhibit flight behavior different from that of solid­
payload projectiles because of an overturning moment exerted by the liquid on 
the casing. In fact, this liquid moment has produced instabilities which are 
absent for solid-payload shell. 

The work of Stewartsonl, which assumed inviscid flow, and the viscous 
corrections of Wedemeyer 2 •3 have provided the basis of the theoretical predic­
tions made heretofore. This theory applies to liquids in solid-body rotation 
in projectiles flying with small yaw. It demonstrates the existence of oscil­
lations in the liquid and predicts possible instability when resonance occurs; 
i.e., when the frequency of angular motion (nutation) of the shell, -r,* is 
equal to a liquid eigenfrequency (natural frequency of free oscillation), CR. 

The Stewartson-Wedemeyer theory yields values for several liquid parame­
ters in the region of resonance: frequency and damping of free oscillations, 
and liquid pitch (in plane) and yaw (out of plane) moments. The predictions 
of this theory have been generally substantiated by gyroscope experiments 4• 

The Stewartson-Wedemeyer theory assumes that the timewise variation of 
the flow variables everywhere in the container is the same as that of the 
nutational motion. This assumption, applicable for stability studies, would 
only be valid for actual shell late in the flight, after the fluid has been 
fully spun-up and coned-up; i.e., liquid transients have decayed. This 
assumption will be retained in the present work, yielding a time-independent 
problem. 

* Definitions are given in List of Symbols~ p. 41. 

1. K. StewCIPtson~ "On the Stahility of a Spinning Top Containing Liquid~" 
Jour-nal of Fluid Mechanics~ Vol. 5~ Part 4~ September 1959~ pp. 5??-592. 

2. E. H. Wedemeyer~ "Dynamics of Liquid-Filled Shell: Theory of Viscous 
Corrections to StewCIPtson 's Stability Problem~" BRL Report 1287~ June 
1965. AD 4?24?4. 

3. E. H. Wedemeyer~ "Viscous Corrections to Stewartson 's Stability Criterion~" 
BRL Report 1325~ June 1966. AD 489687. 

4. R. Whiting and N. Gerber~ "Dynamics of a Liquid-Filled Gyroscope: Update 
of Theory and Experiment~" BRL Technical Report ARBRL-TR-02221~ MCIPch 
1980. AD A083886. 
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Previously a theory5 was developed that uses the linearized Navier-Stokes 
equations to obtain the free oscillations of the fluid. A modal analysis 
resulted in an eigenvalue problem for CR and the decay rate of the waves, 

c1• The complexity of this eigenvalue problem requires a large scale computer 

program. A major part of this program is also required in the present problem 
which studies the forced oscillations resulting from projectile nutation. The 
results should be more accurate than those of the Stewartson-Wedemeyer theory, 
which employs inviscid flow equations plus viscous corrections at sidewall and 
endwalls. 

This work addresses the task of calculating liquid moment by an extension 
of the above-mentioned procedure 5• The method is to solve the internal flow 
problem, calculate the liquid moment by integrating the computed pressure, and 
then obtain the resultant motion from the dynamical equations of yaw. This 
study will treat only the case of the completely-filled shell. The moment due 
to viscous shear will be reported separately. The approach is similar to that 
of Reference 5; namely, to apply a modal analysis (separation of variables) in 
the flow solution which gives rise to ordinary differential equations, and in 
the process making a correction required to compensate for neglect of the no­
slip conditions at the endwalls in the modal analysis. 

The results of the present analysis will be compared with experimental 
results whenever possible and with theoretical results of Murphy&. The latter 
uses Wedemeyer's viscous corrections at both sidewall and endwalls to resolve 
Stewartson•s equations. 

Some nomenclature that has been used regularly in the past2-5,7 will now 
be supplanted by nomenclature from Reference 6. 

II. EQUATIONS OF YAWING MOTION 

We shall limit our consideration to straight trajectories and small yaw 
angles. We introduce two coordinate systems. The first is an inertial, 
earth-fixed system of axes x, y, z. The x-axis coincides with the projectile 
velocity vector, and the z-axis lies in the vertical plane; then they-axis is 
directed so as to form a right-handed system. The second system is the aero-

~ ~ ~ ~ 

ballistic x, y, z non-rolling system which has the x-axis along the projectile 

axis of symmetry and the z-axis initially in the vertical plane. These sys-
~ ~ 

terns are shown in Figure 1; they and z axes are omitted for clarity. 

5. C. W. Kitchens, Jr., N. Gerber, and R. Sedney, "Oscillations of a Liquid in 
a Rotating Cylinder: Part I. Solid-Body Rotation," BRL Technical Report 
ARBRL-TR-02081, June 19?8. AD A05??59. 

6. C. H. Murphy, '~ngular Motion of a Spinning Projectile ~ith a Viscous 
Liquid Payload," BRL Technical Report in preparation. 

?. Engineering Design Handbook, Liquid-Filled Projectile Designl AMC Pamphlet 
?06-165, April 1969. AD 853?19. 
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The x = 0 and ~ = 0 values are located at the midplanes of the unyawed 
and yawed cylinders, respectively. The ~-axis is nutating about the x-axis at 
the angle K1 = K1(t). The components of the projection in they, z plane of a 

unit vector lying on the ~-axis are denoted by nyE and nzE· 

The yawing motion is characterized by two variables, a and a. The angle 

of attack, a, in the aeroballistic system is the angle in the vertical plane 

measured also from the x-axis to the velocity vector; the angle of slideslip, -a, is the angle in the horizontal plane measured also from the ~-axis to the -velocity vector. For the small ya~ angles considered, a =-nzE and a =-nyE· 
It is convenient to combine a and a into a single complex variable: 

- -
E; :: e+ia = -(nyE + i nzE)· (1) 

The fluid pressure forces on the cavity surfaces produced by the motion 
give rise to a moment on the projectile. The spin-decelerating component, 
ML~' is zero here; the other components can be represented in complex form, 

MLY + iMLz· We shall consider only the liquid moment acting on the projec­

tile. The resulting model is adequate for comparing theoretical outputs; the 
liquid moment can be added to the other moments acting on shell or gyroscrope 
as required. The differential equation of yawing motion is * 

(2) 

The quantity Ix is the moment of inertia of the empty axisymmetric shell about 

its longitudinal axis. Iy is the traverse moment of inertia of the empty 
• 

shell about its center of gravity. The spin rate of the shell is ~ (taken to ,._ 
be positive); t is time. The term IyME; is an aerodynamic moment for a 

projectile. For a gyroscope this term is a gravitational moment ar1s1ng from 
the separation of center of gravity and pivot point, and in most experiments 
is zero. 

In general there is an interaction between the motion of the projectile 
and the liquid motion. Here we shall specify the motion of the projectile. 
In particular the cylinder is nutating with constant frequency and exponen­
tially-growing yaw: 

(3) 

* This is Eq. (2.4) of Reference 6 with only the liquid moment on the right-
hand side. 
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where 

Kl = K eET~t - 0 • ~1 =1~t. f::(1-i £)1. (4) 

1 is the nutational fre­

Also K1 is the yaw ampli­

tude, and ~1 is the angular orientation* of the ~-axis in the x, y, z system 

as shown in Figure 1. 

Here K0 is the magnitude of the yaw at time t = 0; 
• 

quency divided by ~. and the yaw grows when £1 > o. 

The motion of the projectile enters the flow problem via the boundary 
conditions. Under the assumption that the flow is in phase with the motion of 
the shell, the pressure disturbance will have the time dependence of Eq. (3), 
and consequently the liquid moment will also have this form. A nondimensional 
liquid moment coefficient, CLM• is now defined**: 

{5) 

where mL is the mass of the liquid. eLM is a complex quantity whose real part 
represents a moment that changes the yaw angle, and whose imaginary part 
changes the nutation rate. Thus: 

(6) 

where CLSM and CuM represent the 11 1 iquid side moment" and "1 iquid in-plane 

moment", respectively. That CLSM and CLIM represent these moments can be 

demonstrated by taking the scalar products of the moment vector (MLY• MLz) 
with a unit vector parallel to the yaw vector, (cos ~ 1 • sin ~ 1 ), and a unit 

vector normal to the yaw vector, (- sin ~ 1 • cos ~1 ), respectively. 

I I I. FLOW PROBLEM 

A. Flow Equations and Boundary Conditions 

Cylindrical polar coordinates are introduced in the earth-fixed frame 

y = r cos a, z = r sin a, X = X, (7) 

* For simplicity the angle of attack is asswned to be im:tially zero and the 
angle of sideslip to be initially positive; i.e.~ ~10 of Reference 6 is zero. 

**See Eq. (2.?) in Reference 6. 
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and in the non-rotating aeroballistic frame, 

- - -y = r cos e, z = r sin 8, - ,..., 
X = X. (8) 

All the above terms are non-dimensional; lengths and distances are non­
dimensionalized by a, the cross-sectional radius of the cylinder. The rela­
tionship between the two sets of cylindrical coordin~te: f~r small K0 , 

obtained from the orthogonal transformation between x, y, z and x, y, z, is 

(9a) 

{9b) 

(9c) 

where tis the non-dimensional x-coordinate of the pivot point. 

To obtain the flow, we assume a small disturbance to a basic flow, which 
is taken to be solid-body rotation in an unyawed cylinder. The Navier-Stokes 
equations are linearized to produce the perturbation equations.* The flow 
variables are the radial, azimuthal, and axial velocity components, and pres­
sure, given here in non-dimensional form: 

* u = U - K0 u, * v = V - K0 v, * P = P - K0 p. (10) 

The symbols u, v, w, and p represent the total values. U, V, W, and P are the 
basic undisturbed variables; and n, ~. ~. and pare perturbation variables** 
of order one. For solid body rotation the basic flow is 

u = 0, V = r, w = 0, aP I ar = r. ( 11) 

The velocity components are non-dimensionalized by a~, and pressure by pa2~2 , 
where p is the density of the liquid. 

On substituting Eqs. (10) and (11) into the Navier-Stokes equations and 
linearizing with respect to K0 , we obtain the perturbation equations in non-
dimensional form: 

* These a~ Eq. (3) in Reference 5. 

** The negative signs in Eq. (10) were employed to comply with the nomenola­
tu:t'e of Reference 6. 
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* * * (ru)r + v9 + rwx = 0 

*- * 2*v * 1 [ 2* 2 * ut + u9 - = -Pr + Re- v u - r- u 

*- * 2*u Vt + Va + 

-where subscripts denote partial differentiation, t = 

v2 = a2;ar 2 + r- 1 a;ar + r- 2 a2;ae2 + a2;ax2• 

The Reynolds number is 

Re = ~ a2/v, 

where vis the kinematic viscosity of the fluid. 

~t, and 

(12a} 

(12b) 

(12c) 

( 12d) 

(13) 

(14) 

The boundary conditions are: no flow through the bounding walls and no 
slip along them; i.e., 

0(?=1) = w{?=1) = o, 
= = 

O(x=±c) = w(x=±c) = o, 

v(?=1) = 1 
-

v(x=±c) = r 

(side) 

(end) 

where u, v, ware non-dimensional cylindrical velocity components in the -

(15a) 

(15b) 

aeroballistic system ?, a, x; and c is the half-height, c, of the cylinder 
divided by a. 

The boundary conditions must be transformed to the coordinates used in 
Eq. {12); the transformations of Eq. (9) are used to accomplish this.* The 
resulting non-homogeneous boundary conditions in the inertial system are: 

* (x-t) Real [ -i {1-f) exp {i (f~t-9)}] + O(K0 ) (16a) uwa ll = 

* -(x-R.) Real [(1-f) exp {i(f~t-9)}] + O(K 0 ) (16b) Vwall 

* -r Real [-i(l-f) exp {i(f~t-a)}] + O(K0 ). (16c) wwall = 

(Recall that f = (1-ie:)•.) 

* A dePivation is outlined in Appendix A. 
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The t and a dependence of the boundary conditions is satisfied by a flow 
solution of the form 

* Real * u = (uc) 

* Real * v = (v c) 

* Real * w = (we) 

* Real (Pe) p = 

= Real [u(r,x) 

= Real [ v ( r ,x) 

= Real [w(r,x) 

= Real [p(r,x) 

exp 

exp 

exp 

exp 

{i ( f;t-e)}] 

{i (f;t-6)}] 

{i (f~t-6)}] 

{i (f;t-6)}]' 

(17a) 

(17b) 

(17c) 

(17d) 

where u, v, w, and pare complex functions. * * * * The functions ue, ve, we, and Pe 

are clearly also solutions of Eq. (12). We substitute these complex solutions 
into Eq. ( 12) to obtain: 

ru + u - iv+ rw = 0 
-r -x 

i (f-1)u - 2v = -p + (1/Re)[u + u /r - 2u/r2 
-r -rr -r 

+ u + 2iv/r2] 
-xx 

i (f-1)v + 2u = ip/r + (1/Re)[v + v /r - 2v/r2 
-rr -r 

+ v - 2iujr2] 
-XX 

i(f-1)w = -p + (1/Re)[w + w /r- w/r2 + w ]. - -x -rr -r -xx 

The wall boundary conditions of Eq. (16) become 

u = -i(1-f) (x-1), 
-wall 

v = -(1-f) (x-1), 
-wall 

~wall = i(l-f) r. 

Axial boundary conditions are 

u(r=O) - iv(r=O) = 0, w(r=O) = 0, 

p(r=O) = 0. 

13 
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( 18d) 
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These are required by the equations themselves, assuming that all variables 
and their derivatives are finite at r=O; a derivation is given in Appendix B. 

The solution to Eq. (18) is expressed as the sum of two solutions: 

u = u + u , v = v + v 
-P -H -p -H 

w = w + w , p = p + ~H, -p -H - -p 

where the particular solution (u , v , w , p ) is 
-p -P -P -p 

u = -i[(1-f)2f(1+f)]x + i(1-f)t 
-p 
v = -[(1-f)2/(1+f)]x + (1-f)t 
-P 
w = i(1-f)r 
-p 
p = -(1-f)2rx+(1-f2) tr. 
-P 

Sidewall boundary conditions are now: 

u ( r= 1) = -i[2f(1-f)/(1+f)]x 
-H 
v ( r= 1) = -[2f(1-f)/(1+f)]x 
-H 
w (r=1) 
-H 

:: o. 
Endwall boundary conditions are: 

u (x=~) = -i[2f(1-f)/(1+f)Jc, 
-H 

v (x=c) = -[2f(1-f)/(1+f)Jc, 
-H 

w (x=c) = w (x=-c) = o. 
-H -H 

u (x=-c) 
-H 

v (x=-c) 
-H 

= -u ( x=c) 
-H 

= -v (x=c) 
-H 

Axial boundary conditions are the same as those of Eq. (20): 

u (r=O)-iv (r=O) = w (r=O) = p (r=O) = 0. 
-H -H -H -H 

(21) 

(22a) 

(22b) 

(22c) 

(22d) 

(23a) 

(23b) 

(23c) 

(24a) 

(24b) 

(24c) 

(25) 

The total problem is now finally given by Eqs. (18), (23), (24), and (25) 

for u , v , w , and p • 
-H -H -H -H 

14 



B. Modal Analysis: Separated-Variable Solutions 

1. Form of Solution. 

The solutions to Eq. (18) will be obtained using separation of vari­
ables with the corrected endwall condition described in the next section. 
This gives rise to a non-standard eigenvalue problem for the x variation. 
Separation of variables requires solutions of the form 

(26) 

Substituting these into Eq. (18) yields ordinary differential equations for 
the R's and X's. It can be shown, see Appendix C, that the X; must satisfy 

the harmonic equation 

(27) 

for i = 1, 2, 3, 4, where A is the eigenvalue. The equations for Ri are given 
in Eq. (33) below. The conclusion is that the general form (26) reduces to 
that assumed in the modal analysis of Reference 5. 

Another possible approach is the method of Hall a, which was developed for 
circular Couette flow in a finite length cylindrical annulus. It would use a 
modified form of the theory of Reference 5, and the no-slip condition on the 
endwall would be satisfied at a finite number of points. One feature of this 
method, in common with the approach adopted here, is that the Ak (or k in 
Reference 5) are complex. 

The separation of variables leads to the result that all flow variables 
have the form 

R(r)[Al sin AX + A2 cos AX]. 

The sidewall boundary conditions Eqs. (23a) and (23b), show that u and v are 
-H -H 

odd functions of x at r=1; thus series expansions of eigenfunctions should 
contain only the odd functions; i.e., the sin AX's for u and v • Inspection 

-H -H 
of Eqs. (18a) and (18b) containing these u and v solutions shows that w 

-H -H -H 

8. P. J. Blennerhasset and P. Hall, "Centrifugal Instabilities of 
Cirawnferential now in Finite Cylinders: Linear Theory," Proa. Roy. Soc. 
London A-365, pp. 191-207, 1979. 
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must then contain only cos AX and p must contain only sin AX. Thus we assume 
-H 

a solution in the form of the following infinite series:* 

u = L ~k(r) sin AkX, 
-H k=l 

w = 
-H 

_L ;k(r) COS AkX, 
k=l 

(28) 

The uk, vk, wk, pk are complex functions which are solutions of Eq. (33) 

below. In the procedure described next, for satisfying approximately the end­
wall boundary conditions, Eq. {24), the eigenvalues AI< are complex; the 11 un-
corrected .. form of this boundary condition would give real '-k and, therefore, 
the normal modes. 

2. Corrected Endwall Boundary Condition 

The above solution cannot satisfy all the endwall boundary condi­

tions, Eq. (24). For Ak = kn/(2c), where k is odd, it satisfies Eq. (24c) but 

fails to satisfy the no-slip condition. To correct for this, a procedure 
analogous to that of Wedemeyer 2 ,3 is adopted. The technique of matched 
asymptotic expansions is used to derive the correction; it is explained in 
detail in Appendix D. The three boundary conditions of Eq. {24) are required 
to determine the solution to Eq. (18). It is shown in Appendix D that the 
outer solution to Eq. (18) is determined by only one boundary condition on 
~H· The outer solution is matched to the inner, boundary layer type, solution 

which satisfies the no-slip condition. The one condition on the outer solu­
tion for ~H can have different forms for various degrees of approximation. 
Thus, 

~H = 0 at X = t C 

gives the solution to 0 {Re-112); this is the uncorrected solution with 
real Ak. The next approximation 

at x = c 

-at x = -c 

(29a) 

{29b) 

gives the solution to 0 (Re-1); this is the corrected solution with complex 
\· 

* The negative sign appears in the w series for the purpose of facilitating 
-H 

the adaptation of existing programming to the present problem. 

16 



Here non-dimensional 6c is given by the following sequence: 

a= 2-1/2 Re112(1-i)(3-f)1/2 

a= 2-1/2 Re112(1+i)(1+f)1/2. 

oc = [L (1 __ 2 ) + _1 ( 1 + _2 )] • 
2a 1-f 2a 1-f 

(30) 

The complex square roots are chosen to be the ones that make the real parts 
of a and a positive. Detailed expressions are found in Eq. (A.5.) of Refer­
ence 5. 

The theory giving conditions (29) is asymptotic for Re + m. The lower 
limit on Re that will give a certain accuracy in the solution must be deter­
mined by comparison of the results with experiment or by getting the solution 
using the next term for the boundary conditions to 0 (Re- 312). 

Each cos ).kz term of w in Eq. (28) must individually satisfy Eq. (29). 
= -H 

Substitution at x = ± c yields the functional equation for the denumerable set 
of permissible ).k's, 

= = 
COS ).kc + >.k 6C sin >.kc = o. {31) 

For 1 oc 1 /c«1, 

* ).k : K: (k1r)/[2(c-oc)J {k odd) {32) 

3. Ordinary Differential Equations for Radial Variation 

The solution in Eq. (28) portrays the modal composition of the 
perturbed flow in the axial direction; each term of the four series is a 
solution to Eq. {18). When the four k th terms are substituted into Eq. {18), 
the sin >.kx and cos >.kx terms cancel out, leaving the following set of ordi-
nary differential equations for uk, vk, wk. and Pk (where , = d/dr), omitting 
subscripts k on the variables: 

ru' + u- iv + ).krw = 0 (33a) 

.. 
Re-1 u'' + (Re r)-lu' + [i (1-f)-Re- 1 (2jr2 + ).k2)]u + (33b) 

.. ,. , 
[2+2i(Re r2)-l]v = p 
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.... 

Re-l v 11 + (Re r)-1 v 1 + [i (l-f)-Re-l(2/r2+>..k2)]v -

[2+2i(Re r2)-l]u = -i p/r 

These equations are converted to canonical form in order to be 
numerically; i.e. , 

Yi 
1 = dyi /dr fi(r, y1, Y2····Y6), = 1' 2' ••• 6' 

where 

Y1 = u YJ = VI Ys = wl 

Y2 = u - iv Y4 = w Y6 p. 

After the required manipulations are performed, the following sixth 
system is obtained: 

where 

yl 
I 

-(Y2/r) ).k Y4 = 

Y2 = -(Y2/r) i Yr).k Y4 
I 2(Re + i r- 2)y 1 + i(e+r- 2)(Y2-Yl) - y3/r - i(Re/r)y6 Y3 = 

I 

Ys = e y4 - Ys/r - Ak Re y6 

y6
1 = -Re-le Yl + [2i-(Re r2)- 1](y2-y1) + 

i(Re r)-ly3-xk Re-ly
5 

4. Boundary Conditions for Radial Equations 

( 33c) 

( 33d) 

integrated 

(34) 

order 

(35a) 

(35b) 

( 35c) 

(35d) 

(35e) 

(35f) 

(36) 

There are three boundary conditions at r=O and three at r=l. As a 
consequence of Eqs. (25) and (28), conditions at r=O are (reintroducing the 

A A A A 

index k) uk-ivk = wk = Pk = 0, or 

Y2k(O) = Y4k(O) = Y6k(O) = 0. ( 37) 

From Eqs. (23) and (28) we obtain at r = 1: 
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-i[2f(1-f)/(1+f)] X =E uk(1) sin AkX (38) 
k 

- [2f(1-f)/(1+f)] X =E vk ( 1) sin AkX k 

0 = - t ~k(1) COS AkX• 

In order to obtain ,uk(1) and vk(1), we expand the function x in the inter-
= ;:: 

val -cc;;xc;;c in a series in Xk(x) =sin >.kx: 

(39) 

The functions Xk{x) are the eigenfunctions of the x-eigenvalue problem dis­
cussed in Section III.B.1. When oc = 0 the "k are real and the eigenvalue 
problem is a standard self-adjoint problem. The eigenfunctions are orthogonal 
and form a complete set; in fact, the bk are the Fourier coefficients. For 
oc*O, and since oc is complex, a standard self-adjoint problem is not ob­
tained. The eigenfunctions are not orthogonal. They are biorthogonal with 
respect to the solutions of the adjoint problem, which property enables the bk 
to be determined. Some of the details are discussed in Appendix E; here we 
merely state the coefficients: 

= 
(2/>.k2) [1 + (>.koc)2] sin >.kc 

E [1 + (>.k oc)2] - oc 
(k odd) 

(40) 

From Eqs. (34}, (38), and (39) the sidewall boundary conditions are: 

(41a) 

vk(l) = 0 (4lb) 

(41c) 

An alternative set of coefficients, ak, are also used for the sin AkX expan­
sion of x; actually, these had been used before the bk formula of Eq. (40) was 
derived. They are determined by optimizing, in a least squares sense, the fit 
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kf 
of the partial sum, L ak sin ~k x (k odd), to the function x over the inter­

k=l 
= = 

val -C(X(C. Thus, the (kf-1)/2 ak•s are calculated which minimize the follow­

; ng integra 1 (where k is odd) : 

kf 
I x - ~ ak sin Akx 12 dx. 

k=l 
( 42) 

In our work the minimization was carried out with a preprogrammed computer 
routine that involved an iterative operation. The Fourier series, 

X (k odd), 

furnished good initial guesses for the ak•s. We have generally used eight 

terms in the series of Eq. (39) or its counterpart with ak•s. These have 

furnished sufficiently accurate representations of the function x. 

5. Numerical Procedures. 

The differential system, Eq. (35), and initial conditions, Eq. (37), 
constitute the same numerical integration problem, including orthonormaliza­
tion, as does the eigenfrequency determinations. We refer the reader to 
Reference 5 for a detailed description of the numerical procedures. One 
difference arises because the terminal conditions, Eq. (41), are non-homogene­
ous. 

In the orthonormalization process5, the interval Q(r(1 is divided into N 
sub-intervals. In each subinterval three linearly independent solutions for 

u, v, w, p which originally satisfy the initial conditions at r = 0 are found, 

and these are combined linearly so that the total solution is continuous at 
the boundaries of the sub-intervals. The process of determining the coeffi­
cients of the combinations begins in the last (N th) subinterval by applying 
the inhomogeneous sidewall conditions at r = 1 for a given k: 

( 43) 
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The quantities on the right-hand sides are obtained from Eq. {41). The other 
sets of c1, c2, c3 for the succeeding subintervals can now be determined in 
sequence proceedingfrom r = 1 to r = 0 by the method described in Section 
III.E. of Reference 5. 

IV. EVALUATION OF PRESSURE 

The flow variable of primary interest here is the pressure. From Eq. 
(17d), 

where 

p (r,x) = p + i p • 
- -R -I 

( 45) 

The total pressure, to within an additive constant, recalling Eqs. (10) and 
(11), is 

* P = l r2 - Ko P• 
2 

{46) 

The liquid moment calculations call for pressure evaluations at constant 

values of; and~. Accordingly, the l r2 term in Eq. (46) is replaced, from 
2 

Eq. ( 9a), by 

. 
l r2 = l ~2 - K0 ee+-rt r(x-R.) cos {-r~t - a) + 0 (K0 2). 
2 2 

(47) 

Thus, by Eqs. {46) and {47), the disturbance pressure, which is measured at 
points fixed on the cylinder surface, is 

* Dp : p - ..!_ ~2 = ..!_ r2 - J.. ;2 - K
0
p. 

2 2 2 
. 

Dp = p -l.~2 = -K ee:-r~t [-p sin {-r+t- e)+ 
2 ° -I 

. 
+ {p + r (x-t)} cos {-r~t - e)]. 

-R 
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The r, a, x in the bracketed term of Eq. (48) can be replaced by r, 8, x 

without changing the order of the approximation since r = r + 0 (K0 ), 8 = 8 + 

-0 (K0 ), x = x + 0 (K0 ). Hence, Dp (r = 1) = Dp (r=l) + 0 (K0 2) and 
- -Dp (x = t c)= Dp (x = t c)+ 0 (K 0

2). By Eqs. (21), (22d), and (28), 

~R =Real[~ 

~I = lmag [ 1 
Pk(r) sin Akx + (1-f2) t r - (1-f)2 r x J 

Pk(r) sin AkX + (1-f2) i r - (1-f)2 r x} 

The disturbance pressure of Eq. ( 48) is rewritten as 

Dp -Koen$t [ Pl sin (~1 - e) + P2 cos (~1 - a)] 
where pl - ~r' P2 = p + r (x-t). 

-R 
Amplitude and phase of Dp are denoted, respectively, by 

and 

(49) 

(50) 

(51) 

The pressure measurements of Whiting9 can be compared with our pressure 
calculations. In these experiments the liquid is first completely spun up in 
an unyawed cylinder; then the cylinder is nutated at a fixed small angle of 
yaw about its center (£ = 0) with a fixed frequency. Built-in pressure-mea­
suring apparatus enables the disturbance pressure to be measured at two points 
on the endwall. For comparison we choose data from Figures lOa, lOc, lOd, lOe 
in Reference 9, which show Cp measurements plotted against the forced coning 

frequency, T. 

The comparison is shown in Figures 2 and 3. The solid curves are plots 
of the present computations of Cp. The locations of the peaks, in the experi-

mental data and theoretical results, agree to within about 2.5%. The largest 
discrepancies in amplitude in Figures 2a and 3a occur at the peaks, where the 
differences are approximately 15%. The overall percentagewi se agreement is 
poorest in Figure 2b, where the Reynolds number is two orders of magnitude 

9. R. D. Whiting, '~n ExpePimentaL Study of FoPced AsymmetPic OsciLLations in 
a Rotating Liquid-Filled CylindeP," BRL Technical RepoPt ARBRL-TR-023?6, 
OctobeP 1981. AD A10?948. 
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smaller than those of the other cases. It was noted above that the error in 
the theory increases as Re decreases; this may be reflected in Figure 2b. We 
note that the percentagewise scatter in the measurements is also greatest for 
this case. 

Computations by the theory of Reference 6 are _also plotted. In Figures 
2a, 3a, and 3b they are indistinguishable from the solid line curves. In the 
low Reynolds number case, however, the differences are significant and the 
results of Reference 6 show better agreement with measurement. The eigen­
frequency, CR, computed by the method of Reference 5, is indicated for each 

case in Figures 2 and 3 and in all subsequent figures. In diagrams having 
peaks, namely those for pressure coefficient, side moment coefficient, and yaw 
growth rate, it is seen that the •-value at the peak is very close to CR for 
large Reynolds numbers, but that the difference between these two frequencies 
increases as Reynolds number decreases. 

V. LIQUID PRESSURE MOMENTS 

Our objective is to determine the moment produced by the liquid on the 

spinning and nutating shell, namely, MLY + i MLz of Eq. (5). We shall evalu-
.... ..... ..... 

ate the moment about the center of gravity of the projectile in the x, y, z 
system. Details need be shown for only one component, say MLz• because of 
axisymmetry in the transverse motion. 

(52) 

The three terms on the right-hand side denote the moments on the side, top, 
and bottom walls, respectively.* 

(53a) 

(53b) 

(53c) 

*Formulas for ML~S, ML~T, and ML~B are found in Section 3-3.1 of Reference?. 

Eqs. (3-31) and (3-30a) contain errors in sign; there should be negative signs 
before the integrals. 
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The non-dimensional cylinder radius occurring in the integrand of Eq. (53a) is 
equa 1 to 1. 

When p, of Eq. (48), is substituted into Eq. (53), the 1/2 ;2 term makes 
no contribution to the integrals, and the lowest order terms therefore are 

O(K 0 ). Hence for first order accuracy in K0 the integrands may be evaluated 

in the earth-fixed system. The integrals become: 

MLZs/(pas;2
) ~ -• K1 [(sin~ o1) \:~ -(x-t) ~ 1 (r~l) dx + (54a) 

(cos 0)) ~:~ (X-t) { ~R (r~l) + (x-tl} dx] 

MLzT/(pa 5F) = n K1 [(sin ~1) J ~ -r2 P (x=c) dr + (54b) 
-I 

(cos ~ 1 ) Jl -r2 { p (x=c) + 
0 -R 

r (~-tl} dr J 

MLzB/(pa5~2) = -1T K1 [(sin o 1 )f~ -r2 ~I (x=-c) dr + (54c) 

(cos ~1)~~ r2 { P (x=-c) -r (~+t)} dr J . 
-R 

The net moment on the endwalls is 

MLzE/ ( pa 5~2) = 1f K1 [sin ~1 Jl -r2 { P (x=c)-p (x=-~)} dr + (55) 
0 -1 -1 

cos ~ 1 J 1 
r2 { p (x=c) -P (x=-c) + 2 rc} dr J . 

0 -R -R 

We observe that MLZE is independent of t. 
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The moments of Eqs. {54a) and (55) have the form: 

MLzs= - Kl {MlS sin ~1 + M2S cos ~1) (pa5f2) 

MLzE= - K1 {MlE sin ~l + M2E cos ~l) (pa5~2). 

{56) 

The moment coefficients M15 , M25 , M1E, and M2E are functions of Re, c/a, T, 

and e. 

M1s = - • !mag[)~~ (x-1) p (r=l) dx] {57 a) 

M25 = • Real~~~ (x-t) p (r=l) dx + (2/3) (C' + 3 ~12)] (57b) 

MlE = • !mag [J~ r2 { ~ (x=~) -P (x=-~)} dr + c/2] {57c) 

M2E = - • Real [J~ r2 { ~ (x=~) -P (x=-~) } dr + c/2 J. {57d) 

The total moment is: 

(58) 

where {59) 

Our computational results will be exhibited in terms of the moment coef­
ficient, eLM• defined in Eqs. (5) and (6). By Eqs. (5), {6), and (58}, 

CuM = -M1 I [2·nc/a]. {60) 

Computations of CLSM and CLIM were performed for four Reynolds numbers cover­
ing several orders of magnitude: Re = 1 x 103, 5 x 103, 5 x 104, and 
5 x 105• Two aspect ratios, 3.126 and 1.042, were employed, pertinent to 
apparatus currently avaflable for experiments. A single value of E was con­
sidered, namely e = 0.02, which lies in the region of maximum yaw growth rate 
occurring in BRL gyroscope experiments; and, finally, t = 0. 
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Our interest lies primarily in the side-plane moment, which is the compo­
nent that affects the yaw of the projectile. Figures 4 and 5 show plots of 
CLSM versus nutational frequency, •· The decrease of amplitude and flattening 

of peak with decreasing Reynolds number is clearly evident for both aspect 
ratios. Switching the aspect ratio from 3.126 to 1.042 changes the natural 
mode primarily being excited by the same range of forcing frequencies, and the 
new amplitudes consequently differ appreciably from the old. 

For comparison of our output with other results we look at computations 
by the Reference 6 method (pressure moments only) for the same cases. Corre­
sponding curves lie very close together for Re = 5 x 104 and 5 x 10s for both 
aspect ratios, and divergence increases as Reynolds number decreases. 
Generally, the Reference 6 method gives higher peaks than the present method. 

Additional comparisons are made for the CLIM• the in-plane moment coeffi­
cient, in Figures 6 and 7. Again, the agreement varies in an inverse manner 
with Reynolds number. 

VI. YAW GROWTH RATE 

If the forcing moment of Eq. (2) has the form 

then the following expression is a solution to Eq. (2): 

(61) 

This is exactly the motion assumed in Eq. (3) for the purpose of calculating 
the liquid moment. The amplitude variation is governed by the yaw growth 
rate, ET~. The growth rate factor, E, gives a measure of the yaw growth or 

decay in one nutational cycle. If e>O, 1~1 grows until the small yaw assump­
tion is no longer valid. 

Eq. (61) is a solution to Eq. (2) only for a restricted set of f's; these 
values are the solutions to the functional equation obtained by substituting 
Eq. (61) into Eq. (2): 

(62) 

where F is also a function of the properties of the fluid, the dimensions of 
the cavity, and the spin-rate. 
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According to Stewartson-Wedemeyer, F of Eq. (62) is negligibly small 
except near resonance. A resonance condition will generally occur when 

• 
Tn ~ CR, where Tn 'is the nutational frequency of the empty shell 
and CR is a natural inertial frequency of the rotating liquid. 

For T ~ CR, F can be approximated by the first term of the Laurent series of 
a function with a simple polel,3 

where the residue, D, depends on the parameters of the problem. In this case 
Eq. (62) yields three complex solutions for f. Only those solutions are 

applicable for which T ~ CR; generally one of these will have a positive E. 
Experiments have consistently shown that for a significant span of time, the 
motion is described by an exponential solution with positive E. 

-In our analysis, applicable also away from resonance, the ~of Eq. (61) 
and the moment of Eq. (5) are substituted into Eq. (2) to yield the following 
functional equation for f: 

Iy f 2 - Ix f - ly M/~2 = -i(2n pa 4c) T eLM (f; Re, c/a). 

This equation must be solved by iteration; outputs from the Stewartson­
Wedemeyer theory furnish guidelines for choosing initial estimates of f. 

( 63) 

The motion parameter f (: T -i£T), has been measured in gyroscope experi­
ments*. The calculations of Murphy6 indicate that viscous shear contributes 
significantly to the liquid moment and should not be omitted. Since our 
pressure moment calculations constitute results of incomplete theory, we 

* Applicability of gy~oscope expe~iments to simulation of projectile angular 
motion is discussed in Section 2-? of Reference ?. 
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shall not make any systematic comparison with data from gyroscope experi­
ments. However, we do demonstrate in Figure 8 the capability of our program 
to produce yaw growth rate. We choose two cases; the first was treated in 
Figure 8 of Reference 4, and the second is one of six based on measurements 
described in Reference 10. The six above-mentioned cases are low Reynolds 
number experiments, and the only one with Re>104 is shown in Figure 8. 

The parameter that is varied is Tn = Ix/Iy (since M = 0); in the first 

cases Iy is held constant, and in the second case Ix is held constant. The 
quantities T and £are measured simultaneously; data are presented in the form 

of £T vs T plots. Values of Tn are chosen that lie close to first radial mode 
eigenfrequencies of the liquid, namely, k = 3 for cja = 3.15, and k = 1 for 
cja = 1.04. 

Also shown in Figure 8 are yaw growth rates predicted by the Stewartson­
Wedemeyer theory, which likewise treats only the pressure moment. The complex 
f is computed from the cubic equation described in the discussion following 
Eq. (63). The pairs of theoretical curves agree very well for Re = 5.2 x 10s 
but differ significantly for the Re = 1.24 x 104 case. For both theories the 
peaks lie to the left of the experimental peaks. 

VII. DISCUSSION 

We have presented a detailed treatment of the linearized problem of flow 
of a liquid in a filled spinning cylinder executing angular motion at small 
yaw, and we have exhibited the consequent moments exerted by the liquid on the 
cylinder walls. The angular motion takes the form of nutation at constant 
frequency about an axial point, and yaw growth at an exponential rate; the 
liquid is in solid-body rotation before the angular motion begins. This 
motion approximates the actual motion of the liquid-filled projectile over a 
significant span of its flight history. 

The emphasis of this report is directed primarily to the method of deter­
mining output rather than to the output itself, which can be treated in more 
detail in later studies. We feel it worthwhile to include details of equa­
tions, formulas, assumptions, and derivations involved in the lengthy computa­
tions required to attain the liquid pressure and moment results. 

The agreement of our results with those from the concurrent work of 
Murphy6, who extended the Stewartson-Wedemeyer theory, tends to support the 
conclusions from both; the basic assumptions of linearity and solid body are 
common to both approaches. In addition, both make use of boundary condition 
corrections which are applicable for large Reynolds numbers. 

Future theoretical work will include the additional calculation of vis­
cous shear moments. Experimental work at high Reynolds numbers will also have 
to be performed in order to provide an adequate data base for validating the 
theory. 

10. W. P. D'Amico, Jr., and T. H. Rogers, "Yaw Instabilities Produced by Rapidly 
Rotating~ Hiohly Viscous Liquids,n AIAA Paper AIAA-81-0224, AIAA 19th Aero­
space Sc~ences Meeting, St. Louis, Missouri, January 12-15, 1981. 
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Figure 5. Side Moment Coefficient: Comparison of Results of Present 
Method and Method of Reference 6 (c/a=l .042, c=0.02) (cont.). 
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respectively, Eqs. (7) and (8) 
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APPENDIX A. DERIVATION OF WALL BOUNDARY CONDITIONS 

The wall boundary conditions, Eq. (15), must be restated in terms of 
* * * = u, v, w at r = 1 and x =±c. Recalling the definitions of Eqs. (10} and 
( 11)' 

where t _ cj>t. 

* u = dr/dt = -K u, v = r de/dt 

u = dr/dt = 

0 

w = dx/dt 

* 

* = -K w 
0 

-K u, v = r de/dt 
0 

* 
w = dx/dt = -K w, 

0 

* = r-K v, 
0 

* -= r-K v, 
0 

(Al) 

The velocity transformation between earth-fixed and aeroballistic systems 
is obtained by differentiating Eq. (9) with respect to time and substitut­
ing the expressions of Eq. (A 1) for the derivatives: 

* * - - E:Tlj>t u = u-(x-£)e [cT cos(~ -e) + (1-T) sin(~ -e)] + O(K ) 
1 1 0 

* 
~ = ~-(~-£)ecTQ>t[-(l-•) cos(~ 1 -e) + cT sin(~ 1 -e)] + O(Ko) (A2) 

* . * - - . t w = w-r ecT~ [-cT cos(~ -e) - (1-T) sin(~ -e)] + O(K ) . 
1 1 0 

The tilde superscripts can be dropped from the bracketed terms of Eq. (A2) 
without changing the order of error. 

* 
We now evaluate Eq. (A2) at r = 1, applying the conditions u(r=l) = 

* * 
v(r=l) = w(r=l) = 0. Thus, 

* * -
u(r=l) = u(r=l) + (rr=l-1) (aujar);=l 

* (A3) 

* * 
Similar expressions apply to v(r=l} and w(r=l). The coefficients of_the 
first order terms (in K ) contain gradients which might be large at r = 1 

0 

when the Reynolds number is large. However, at this stage we are only 
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considering perturbations from the point of view of the small parameter K . 
Hence, to zeroth order, o 

* * * 
u(r=l) = v(r=l) = w(r=l) = 0, and consequently 

~(r=l) = -(x-~)e£<~t[£< cos(~ -8) + (1-,) sin(~ -8)] 
1 1 

(A4) 
~(r=l) = -(x-~)eE<~t[-(1-<) cos(~ -e)+ ET sin(~ -8)] 

1 1 

~(r=l) = -e£'~t[-£< cos(~ -e) - (1-<) sin(~ -e)]. 
1 1 

Similar consideration applied to the endwalls leads to the conclusion 
* * * ~ - = - = 

that u(x=±c) = v(x=±c) = w(x=±c) = 0 + O(K ); Eqs. (A2) now yield 
0 

~(x=±~) = -(±~-£)e£'~t[+£< cos(~ -e) + (1-,) sin(~ -e)] 
1 1 

* -v(x=±c) = -(±c-£)e£'~t[-(l-<) cos(~ -e) + £< sin(~ -8)] 
1 1 

(A5) 

* -w{x=±c) = -r e£'~t[-£< cos(~ -e) - (1-<) sin(~ -e)]. 
1 1 
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APPENDIX B. AXIAL BOUNDARY CONDITIONS 

The first of Eqs. (20), namely, ~-i~ = 0 at r=O, is obtained merely by 
setting r=O in Eq. (18a). The next condition, namely, ~(r=O) = 0, is ob­
tained by multiplying Eq. (18d} by r 2 , then setting r=O. 

If one differentiates Eq. (18a) with respect to r, then sets r = 0 
(remembering that ~x(r=O) = 0 because ~(r=O) = 0), one obtains 

2~r(r=O)-i~r(r=O) = 0. (Bl) 

If one multiplies Eq. (18c) by r 2 , differentiates with respect tor, 
then sets r=O, one obtains 

ip(r=O}+(l/Re)[-v (r=0}-2iu (r=O)] = 0. - -r -r (B2) 

Application of Eq. (Bl) here leads to the third condition, namely, 

p(r=O) = 0. (B3) 

Alternatively, the boundary conditions at r=O can be derived only on 
the basis of continuity and single-valuedness. 5 
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APPENDIX C. SEPARATION OF VARIABLES IN THE 
LINEARIZED NAVIER-STOKES EQUATIONS 

Our perturbation equations follow directly from the linearized Navier­
Stokes equations. After the t and e variations are removed, as in Eqs. (17), 
the perturbation equations are in the form of Eqs. (18). The form of the 
solution to these equations was obtained by separation of variables. Since 
this procedure cannot be carried out strictly in the usual manner, it is out­
lined here. 

The variables are separated as in Eq. (26) and substituted into Eqs. 
(18). The manipulations will be outlined only for Eq. (18b) since the others 
are treated in the same way. After collecting terms, Eq. (18b) becomes 

1 
[Re- {R 11 + R'/r- 2R jr2)- i(f-1)] X + 

1 1 1 1 

1 1 
Re- R X 11 + 2 [Re- i /r2 + 1 ] R X - R • X = 0, 

( Cl) 

1 1 2 2 ~ ~ 

where the prime indicates differentiation with respect to the argument. It 
is convenient to denote each coefficient of the functions of x by a single 
symbol. Thus Eq. (Cl) is rewritten as 

g (r) X + g (r) X11 + g (r) X - g (r) X = 0. 
1 1 2 1 3 2 ~ ~ 

Divide this by g and differentiate with respect to r to obtain 
~ 

(g /9 )• X + (g /g)' X11 + {g /g)' X = 0. 
14 1 2~ 1 34 2 

(C2) 

Next, divide by (g /g )• and differentiate with respect tor. This gives 
3 4 

[(g /g )'/(g /g )•]• X + [(g /g )•/(g /g )•]• xu= 0. (C3) 
1 4 3 4 1 2 4 3 4 1 

The usual argument employed in separating variables shows that 

xu = canst. X , 
1 1 

which is the form given in Eq. (27). 

The same process applied to Eqs. (l8d) and (18a) yields 

xu = canst. X 
3 3 
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and 

X = const. X , 
2 l 

respectively. When the above three results are substituted into Eq. (C2}, 
the result is 

X = const. X . 
4 l 

The boundary conditions dictate the solution to the harmonic equations, as 
shown in Eq. (28}. The particular solution stated in Eqs. (22} is obtained 
by setting equal to zero the constants of X11 /X = constant. 

i ; 
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APPENDIX D. THE ENDWALL BOUNDARY CONDITION 

After various transformations, the flow problem to be solved is given by 
Eq. (18), the linearized Navier-Stokes equation, plus the boundary conditions 
on the axis, Eq. (25), on the sidewall, Eq. (23), and the endwalls, Eq. (24). 
The method of solution adopted is separation of variables in order to get the 
normal modes. The axial and sidewall boundary conditions can be satisfied 
with the modal solution, but only the condition of no flow through the end 
wall, Eq.{24c), can be satisfied there. The remaining no slip conditions, Eq. 
(24a, b), cannot be satisfied. Rather than the viscous boundary conditions, 
we satisfy the condition ~H = 0 that would be imposed for an inviscid fluid 
and accept the values of ~H and ~H on the endwalls from the solution, as in an 
inviscid flow. 

The proper normal modes are obtained only for A real in Eq. (27). How­
ever, the modal solution is inconsistent with the linearized Navier-Stokes 
equations and the no slip boundary conditions. Since we have had to drop two 
of the three endwall conditions, we can conjecture that a boundary layer must 
be inserted in order to satisfy these. This is what Wedemeyer 3 did to correct 
the inviscid solution of Stewartson 1• This is the type of correction needed 
here. It is done in the same spirit as Wedemeyer•s correction but must be de­
rived as a correction to Eqs. (18) which are not Stewartson•s inviscid equa­
tions. 

The technique of matched asymptotic expansions is used here since it pro­
vides a systematic method of handling this type of singular perturbation prob­
lem; the results are more easily interpreted than in Wedemeyer•s approach, and 
some difficulties in his approach are avoided. The technique is described by 
Van Dyke 11 • However, the way the technique is applied is tailored to the 
particular problem we solve. 

To avoid a proliferation of indices, the notation is changed for this 
Appendix only. The sub-bar and sub-H are dropped, see Eq. (21), and we 
let C =c. The flow variables are now u, v, w, and p. The linear Eqs. (18) 
are written with the linear operator. 

L(u, v, w, p) = Q. {Dl) 
Only the boundary conditions at x = C are needed in this derivation: 

u = i g 

v = g 

w = 0 

at x = C 

g = - [2f (1-f)/(l+f)] c 

(D2) 

1:1. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic Press, 
New York, N.Y., 
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The asymptotic solution to Eq. (Dl) with Eq. (D2) for Re + m is obtained 
by constructing inner and outer solutions with appropriately scaled inner and 
outer variables. The outer variables are unchanged, which conforms with Eq. 
(18). The outer solution has the asymptotic form 

u ~ u (x' r, Re) + tol 0 
(Re) uol (x, r, Re) + ••• 

v ~ v 
0 (x, r, Re) + to2 (Re) vol (x, r, Re) + ••• 

(03) 
w ~ w 

0 (x, r, Re) + to3 (Re) wol (x, r, Re) + ••• 

p ~ p 0 (x., r, Re) + to4 (Re) Pol (x., r, Re) + ••• 

where to. + 0 as 
J 

Re + m, and this form is valid for Re + m with X and r 

fixed. For the inner solution x. is replaced by y = C - x., and inner variables 

y = y/ <- (Re) (D4) 

-r = r 

are introduced where <- + 0 as Re + m; in this Appendix super-bar does not 
denote complex conjugate. The inner solution has the asymptotic form 

u ~ 61 u. 
1 

(Y, r) + 011 uil (y' r) + 0 0 0 

v ~ ~ v. 
1 

(y, r) + 621 vil G, r) + ••• 
( 05) 

w ~ o3 Wi (y' r) + 031 wil (Y, r) + 0 0 0 

p ~ o4 Pi (y, r) + 041 Pn G, r) + ••• 

where 6. 
J 

+ 0 as Re + m, 6j 1 « oj' and the form is valid for Re + m withy 

and r fixed. 

The scales to., o., o. 1 and <-must be determined from matching the inner 
J J J 

and outer solutions and from whatever information the problem provides. How­
ever, the terms in Eq. (03), u0 (x, r, Re), etc., and u01 (x, r, Re), etc., 

are not in proper form for matching because they are functions of Re. This 
follows from the fact that the first terms satisfy 
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L (u , v , w , p ) = 0 0 0 0 0 (06) 

and similarly for the second terms u01 , 
dependence on Re be in the scales 6j. 

panded in asymptotic series: 

etc. Matching requires that the only 
The terms of Eq. (D3) can also be ex-

u 0 - u 0 ( x, r) + Re - 1 u 1 ( x , r) + ••• 
0 0 (D7) 

etc. 

and 

(DB) 

the form of the expansion being determined by Eq. (06). The functions u0° 
etc., and u01° , etc, satisfy the inviscid equations and are not functions of 
Re; u0

1, etc., and u01 
1, etc., satisfy a non-homogeneous form of the inviscid 

equations. This explains why we can get a solution with only the one boundary 
condition on normal velocity. The process described in this paragraph is 
tailored to the problem we solve; a more direct approach would normally be 
used. 

The asymptotic matching principlel 1 can now be applied. Only the results 
are given: 

The 

£ = Re - 112 

01 = 02 = 04 = 1 

53 = Re -1/2 

first terms in Eq. 

(f 1) 

i (f - 1) 

P = 0 i y 

r 

u. 
1 

v. + 
1 

i v. 
1 

2v. 
1 

2u. 
1 

(05) satisfy the boundary layer equations: 

- - p. - + Ui 1 r y y 

= p.;r: + v. 
1 1 y y 

(09) 

-r w. = 0 
1 y 
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with boundary conditions on the endwall, obtained from Eq. (02), 

u. (0, r) = ig 
1 

v. (0, r) = g 
1 

Wi (0, r) = 0 

and at the edge of the boundary layer, obtained from matching, 

( ... , r) 0 ( c' r) u. = uo 1 

( ... , r) 0 (C, r) v. = vo 1 

pi ( ... , r) = p
0

°(C, r) 

or more generally pi (y, r) = p~ (C, r). 
or allowed. The solution to Eq. {09} is 
the matching. 

No condition on w.(c:o, r) is obtained 
1 

easily obtained and is required in 

The boundary condition, Eq. (29a), must be interpreted as a condition on 
the outer solution which is given by 

(010} 

The functions here satisfy only one boundary condition on the wall: 

(011) 

0 w01 (C, r) = Re 1/ 2 oc X = C 

the latter being obtained by matching. Using Eqs. (011) and {010} we obtain 

w- &:: w = 0 + 0 (Re-1) at x = C, (D12) 
X 
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which is Eq. (29a). This development shows that, rather than solving Eq. 
(Dl), we could solve two inviscid type problems with boundary conditions Eq. 
(Dll) and combine them linearly to get Eq. (010). Actually this is not prac­
tical because the radial variation and no slip conditions at the sidewall must 
be found. 

The above asymptotic solution was obtained using two terms in the outer 
solution and one term in the inner solution. To obtain the next approximation 
to the boundary condition, three terms in the outer and two terms in the inner 

would be necessary. The boundary condition will have an error 0 (Re- 312) and 
should allow a more accurate solution for lower Re. 
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APPENDIX E. THE BIORTHOGONAL EXPANSION 

Separation of variables leads to the result that the X in Eq. (26) 
i 

satisfy.sthe harmonic equation, Eq. (27), where A is a separation constant. 
Considering w and applying the boundary conditions (29) yield the following 

-H 
boundary value problem, assuming t=O, 

Z11 + X 2 Z = 0 

z I (-c) - x2 {!/;; z( -c) = o (El) 

Z1 (c) + x2 ac z(c) = o 

where X (x) is replaced by Z1 (x) because we wish to develope the expansion 
3 

for x needed in Eq. (38). The eigenvalue, A, is determined from 

(l-ac 2 A2 )- sin 2x c = 2CA 
j j j 

= cos 2A. c 
j 

(E2) 

which can be split into two equations, one of which is Eq. (31) and is the 
appropriate one for our problem. A denumerable set of complex solutions, 
A, exists. Even though the differential equation in (El) is self-adjoint, 
j 

the system (El) is not, which means that complex eigenvalues are to be ex­
pected. The non self-adjoint problem and the presence of the eigenvalue in 
the boundary conditions make this a nonstandard problem. The eigenfunctions 
are not orthogonal and several of the usual results for expansion of a 
function in a series of eigenfunctions do not apply. 

This type of problem can be attacked by introducing the adjoint problem: 

-2 
Y11 + A Y = 0 

- _2 - -
Y1 (-c) -X oc Y(-c) = 0 

(E3) 

- _2_ -
v I (c) + x a c v (c) = o 

where - denotes complex conjugate. 
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An essential part of the theory for the expansion of a function in a 
series of eigenfunctions is the proper definition of an inner product. In 
this problem solutions Z (eigenvalue A) to Eq. (El) andY (eigenvalue X) 

j j k k 
to Eq. (E3) are needed to define the inner product (Z , Y ). It can be 

j k 
shown that the inner product must be defined as 

(Z , y ) 
j k 

-c 

=f Z Y dx -
= j k 

-c 

cc[Z (c) Y (c) + Z (-c) Y (-c)]. 
j k j k 

The boundary terms in this expression arise from the presence of A in the 
boundary conditions. The functions Z and Y are biorthogonal if 

(Z , Y ) = 0. 
j k 

j k 

Any solution Z is biorthogonal to any solution Y if j ; k. However, Z 
j k j 

and Z or Y andY are not biorthogonal. 
k j k 

A more or less arbitrary function can be expanded in terms of the eigen­
functions, Z , (or equivalently Y ) 

j co j 

f=~c.z. 
j=l J J 

where C = (f, Y )/(Z Y ) 
k k k k 

with all the usual desirable properties. In particular the function x can 
be expanded as in Eq. (39) with the coefficients b given in Eq. (40). 

k 
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